Monocular Depth Estimation with Sharp Boundary

نویسندگان

چکیده

Monocular depth estimation is the basic task in computer vision. Its accuracy has tremendous improvement decade with development of deep learning. However, blurry boundary map a serious problem. Researchers find that mainly caused by two factors. First, low-level features, containing and structure information, may be lost networks during convolution process. Second, model ignores errors introduced area due to few portions whole area, backpropagation. Focusing on factors mentioned above. Two countermeasures are proposed mitigate blur Firstly, we design scene understanding module scale transform build lightweight fuse feature pyramid, which can deal loss effectively. Secondly, propose boundary-aware function pay attention effects boundary’s value. Extensive experiments show our method predict maps clearer boundaries, performance based NYU-Depth V2, SUN RGB-D, iBims-1 competitive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth Estimation Using Monocular and Stereo Cues

Depth estimation in computer vision and robotics is most commonly done via stereo vision (stereopsis), in which images from two cameras are used to triangulate and estimate distances. However, there are also numerous monocular visual cues— such as texture variations and gradients, defocus, color/haze, etc.—that have heretofore been little exploited in such systems. Some of these cues apply even...

متن کامل

Bayesian depth estimation from monocular natural images.

Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world t...

متن کامل

Aperture Supervision for Monocular Depth Estimation

We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera’s aperture as supervision. Prior works use a depth sensor’s outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To en...

متن کامل

Qualitative Estimation of Depth in Monocular Vision

In this paper we propose two techniques to qualitatively estimate distance in monocular vision. Two kinds of approaches are described, the former based on texture analysis and the latter on histogram inspection. Although both the methods allow only to determine whether a point within an image is nearer or farther than another with respect to the observer, they can be usefully exploited in all t...

متن کامل

Monocular, Boundary-Preserving Joint Recovery of Scene Flow and Depth

Variational joint recovery of scene flow and depth from a single image sequence, rather than from a stereo sequence as others required, was investigated in Mitiche et al. (2015) using an integral functional with a term of conformity of scene flow and depth to the image sequence spatiotemporal variations, and L2 regularization terms for smooth depth field and scene flow. The resulting scheme was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2023

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2023.023424